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Only a few numerical techniques for three-dimensional incompressible transient 
flow calculations have been published [l]. All these techniques are not suitable for 
cases where the Reynolds numbers of the flows are small and the no-slip boundary 
condition on the rigid wall and the boundary condition on the free surface are not 
negligible. In that case one has to solve the flow equations by means of an iterative 
scheme, as was done in the two-dimensional case [2, 31. The solution here is an 
extension of the two-dimensional leveling problem [3] to the 3-D case when the Re 
of the flow is very low and the free surface boundary condition including surface 
tension effects is taken into account. Several examples of the calculation are presented 
with comparisons to experimental results and the two-dimensional numerical solution. 

BASIC EQUATIONS AND METHOD OF SOLUTION 

The numerical solution is based on the Marker and Cell (MAC) method [4] when 
the calculational region is divided into a finite number of stationary rectangular cells 
(boxes in the 3-D case) and the fluid flows through them. 

The velocity components r((u, u, w) are given on the surface of the box and the 
pressure 4 in its center (Fig. 1). The fluid behavior and the free surface shape is 
computed using finite difference approximations for the conservation form of Navier- 
Stokes equations and the conservation of mass equation: 

Dr/Dt = -04 + vV2v + g, (1) 
v- v=o. (2) 
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FIG. 1. Position of field variables on mesh. 

A Poisson equation for pressure is obtained by differentiation and addition of (1) 

Vz+ = -R (3) 
where R is 

R = W)w + GJ”),, + (w2)zz + N4w + (Wm + WM + 4 - vV2D, 
D = u, + v, + IV, . 

Boundary Conditions 

On the rigid wall the no-slip condition is satisfied for the velocity, while the pressure 
boundary condition one can get from the momentum equations. If the curvature 
of the free surface is small, we can approximate the normal and tangential stress 
conditions by the expressions: 

+ - 2~ au,/an = 0, (4) 

v(a24,/as + &4,/an) = 0, (5) 

where n, s are the outward normal and tangential directions, respectively. 
In order to reduce the computation time the boundary conditions at the free surface 

are calculated only for the special case of three orientations of the free surface cells, 
as seen in Fig. 2 (this assumption is sufficient for a case of standing waves, like in the 
case of leveling problems depicted in Fig. 3). For example, the cells in Fig. 2a are 
surface cells, the adjacent cells in the z direction are empty, and adjacent cells in the 
(-z) direction are full or surface cells. For all the three cases we have to calculate 
the normal stress at cell (i, j, k) according to Eq. (4) and two tangential stresses perpen- 
dicular to each other using Eq. (5). 

In order to reduce the computation time required to find the position and orientation 
of the surface cell, 18 different kinds of cells were defined according to the boundary 
conditions to be calculated in the particular cell (instead of four kinds of cells in 
the MAC method). 
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(b) 

FIG. 2. Surfaces for determination of normal and tangential stresses: (a) horizontal, (b) vertical 
surface in y-direction, (c) vertical surface in x direction. 
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FIG. 3. Three-dimensional computational field. 

For low Reynolds number the diffusion terms are dominant with respect to the 
convection terms, therefore we expressed the convection terms and R (from Eq. (3)) 
at time it d t. 

The four linearized equations (for u, u, w, and t$) were solved simultaneously 
by an iteration technique together with the free surface boundary conditions at time 
(n + 1) dt. Using the new velocities the new shape of the free surface and the surface 
tension force were calculated for the next time step. 

In the first stage of the work [5] the S.O.R. method was used to solve the coupled 
equations. A typical problem of 10 x 20 x 24 cells needed 312K core memory 
(on IBM 370/168) and 30-50 iterations per time step (0.54 set per iteration). This 
method, although efficient enough for the 2-D case [3], was found inefficient in the 
3-D case. By using a variant of the Alternating Direction Method analyzed by 
Samarskii [6] and Chorin [7], the computation time was reduced about 40 %. Another 
possibility to reduce the computation time is to extend the ADI Douglas-Rachford 
method, analyzed by Deville [8] for the 2-D case, to the 3-D case. 
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FREE SURFACE AND SURFACE TENSION CALCULATIONS 

In order to impose this boundary condition, it is necessary to know the position 
and the orientation of the free surface cells. Instead of using particles for finding 
the free surface cells (MAC method), the method of Nichols and Hirt [ 1 ] was extended 
for this purpose. 

The kinematic condition for the free surface 7(x, y, t) is given by 

w = DvjlDt. (6) 

Thus, we can calculate 7 from the values of the velocities on the free surface. We place 
imaginary rods, the height of each rod marking the height of the free surface 7(x, y, t) 
at that point. The spacings between the rods being determined by the accuracy require- 
ments of the surface tension computation. The height of the rods changes with time 
according to Eq. (6) (and it is solved by a method suggested by Hirt [9]). The velocity 
components at the surface points corresponding to the rod’s tips are computed 
by means of a second-order Taylor expansion, using the velocity field at time 
(n + 1)Llt. 

The surface tension was introduced into the momentum equations as a body force 
[lo]. The surface tension was computed in planes parallel to the x-z plane only (Fig. 3), 
and perpendicular to x-y plane, assuming the radius of curvature in (v-z) planes to 
be large. 

The tips of the rods describing the free surface were fitted with a cubic curve using 
the spline fit method. The first and second derivatives of the curve were computed for 
the center of each cell and the components of the surface tension force were cal- 
culated, using these derivatives, and introduced into the respective momentum 
equations. 

COMPUTATIONAL RESULTS 

Using the technique described above, several cases of the 3-D leveling problem 
were computed. According to Fig. 3 a static leveling blade with a periodically vary 
edge was held in place at distance z = h from the substrate (z = 0) which was moving 
in the positive direction of the y axis with a constant velocity V. The fluid was being 
introduced into the computational field (inflow) and removed from the field (outflow) 
at a uniform velocity V. In order to simplify the problem and to allow approaching 
steady state solution the excess fluid from the left edge of the blade was removed 
artificially. Figures 4 and 5 are plotter output of steady state solutions for two different 
leveling blade widths (b in Fig. 3). 

Figures 6 and 7 are comparisons between experimental results from Degani and 
Gutfinger [3, 111, the 3-D computational results, and 2-D results from [3]. One can 
see that the 2-D solution is good enough in cases when b/h is small, while for other 
cases the three-dimensional approach should be chosen. 
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FIG. 4. Plotter output for 3-D leveling problem. (b/h = 1, V = 10 cm/s, D = 70 d/cm, Y = 
120 cmB/s, p = 1.5 g/cm5). 

FIG. 5. Plotter output for 3-D leveling problem. (b/h = 20, V = lOcm/s, (I = 70 d/cm, Y = 
120 cm*/s, p = 1.5 g/cma). 
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FIG. 6. Amplitude, a, and film thickness, 7, vs y. b/h = 25. 

2.0 

1.6 

1.2 

a/a, 
.8 

.4 

0 

1 V =15cm/s 1 b -0.5cm ] 

i 
I I 1 I 

-t, o EXPERIMENTAL DATA 
1.2 

.8 

77’h 
.4 

I I I 1 I 1 

0 2 4 6 8 IO 12 

y/h 

FIG. 7. Amplitude, a, and film thickness, 7, vs y. b/h = 6.2. 
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